
Book-keeping --> accounting --> balance --> state
Bookkeeping is the recording of financial transactions, and is part of the process of accounting in business.
Transactions include purchases, sales, receipts and payments by an individual person or an
organization/corporation.
There are several standard methods of bookkeeping, including the single-entry and double-entry
bookkeeping systems.
From <https://en.wikipedia.org/wiki/Bookkeeping>
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511

Op.No. Input Output RemainingAmount
1 123 0 123
2 5 11 117

Compare with UOTX system
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-
e5c84838b19

Authorized capital
Credit
Fixed Assets
Costs
Incomes

state machine
Transactions in Ethereum
ECIP-1049: Change the ETC Proof of Work Algorithm to
Keccak256
Contracts and Transactions
Understanding How ECDSA Protects Your Data.
Signing and Verifying Ethereum Signatures
EIP-155 : Simple replay attack protection

Book-keeping --> Accounting --> Balance --> State

State 0

Authorized
Capital

Credit Fixed
Asset

Balance 0

12 000 9 000 -12 000 9 000

State 1

Authorized
Capital

Credit Electricity
Cost 1

Mining 1 Percent
for Credit

Balance 1

9 000 -3 000 +31 000 -1 000 36 000

State 2

Authorized
Capital

Credit Electricity
Cost 2

Mining 2 Percent
for Credit

Balance 2

8 000 -15 000 - -1 000 20 000

UTxO

116_003 Ethereum-1.1

 116_003 Ethereum-1.1 Page 1

https://en.wikipedia.org/wiki/Accounting
https://en.wikipedia.org/wiki/Business
https://en.wikipedia.org/wiki/Single-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Double-entry_bookkeeping_system
https://en.wikipedia.org/wiki/Bookkeeping
https://www.dreamstime.com/stock-image-d-life-cycle-accounting-process-illustration-circular-flow-chart-image30625511
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-e5c84838b19
https://medium.com/@olxc/ethereum-and-smart-contracts-basics-e5c84838b19
https://whatis.techtarget.com/definition/state-machine
https://medium.com/coinmonks/transactions-in-ethereum-e85a73068f74
https://github.com/ethereumclassic/ECIPs/pull/8
https://github.com/ethereumclassic/ECIPs/pull/8
http://ethdocs.org/en/latest/contracts-and-transactions/
https://www.instructables.com/id/Understanding-how-ECDSA-protects-your-data/
https://yos.io/2018/11/16/ethereum-signatures/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md

State machine
In general, a state machine is any device that stores the status of something at a given
time and can operate on input to change the status and/or cause an action or output to
take place for any given change. A computer is basically a state machine and each
machine instruction is input that changes one or more states and may cause other
actions to take place. Each computer's data register stores a state. The read-only
memory from which a boot program is loaded stores a state (the boot program itself is
an initial state). The operating system is itself a state and each application that runs
begins with some initial state that may change as it begins to handle input. Thus, at any
moment in time, a computer system can be seen as a very complex set of states and
each program in it as a state machine. In practice, however, state machines are used to
develop and describe specific device or program interactions.
To summarize it, a state machine can be described as:

To summarize it, a state machine can be described as:

An initial state or record of something stored someplace•

A set of possible input events•

A set of new states that may result from the input•

A set of possible actions or output events that result from a new state•

Takenobu T. Ethereum EVM illustrated
What is state machine? - Definition from WhatIs.com (techtarget.com)

State tranasition diagramm

 116_003 Ethereum-1.1 Page 2

https://searchwindowsserver.techtarget.com/definition/computer
https://whatis.techtarget.com/definition/instruction
https://searchwindowsserver.techtarget.com/definition/boot
https://searchsoftwarequality.techtarget.com/definition/application
https://whatis.techtarget.com/definition/state-machine

A set of possible actions or output events that result from a new state•

In their book Real-time Object-oriented Modeling, Bran Selic & Garth Gullekson view a state
machine as:

A set of input events 1.A description of the initial state

A set of output events 2.A set of input events

A set of states 3.A set of states

A function that maps states and input to output 4.A set of output events

A function that maps states and inputs to states 5.A function that maps inputs and states to states

A description of the initial state 6.A function that maps inputs and states to output

•

A finite state machine is one that has a limited or finite number of possible states. (An infinite
state machine can be conceived but is not practical.) A finite state machine can be used both as
a development tool for approaching and solving problems and as a formal way of describing the
solution for later developers and system maintainers. There are a number of ways to show state
machines, from simple tables through graphically animated illustrations.

Continue Reading About state machine

Desaware offers an "Introduction to State Machines."•

Xilinx offers a Finite State Machine Editor product.•

Architecture — Sawtooth v0.8.13 documentation (hyperledger.org)•

Decentralised database

A blockchain is a globally shared, decentralised, transactional database.

P2P network inter nodes

 116_003 Ethereum-1.1 Page 3

https://whatis.techtarget.com/definition/finite-state-machine
http://www.desaware.com/tech/statemachineintro.aspx
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?iLanguageID=1&iCountryID=1&title=state_machine
https://sawtooth.hyperledger.org/docs/core/releases/0.8/architecture.html

Radix tree - Wikipedia
Radix tree (also radix trie or compact prefix tree) is a data structure that represents a
space-optimized trie (prefix tree - retrieve) in which each node that is the only child is
merged with its parent. The result is that the number of children of every internal node is

Chain of states
Ethereum can be seen as a state chain.

Decentralised nodes constitute Ethereum P2P network.

Interface to a node

External actors access the Ethereum world through Ethereum nodes.

 116_003 Ethereum-1.1 Page 4

https://en.wikipedia.org/wiki/Radix_tree
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Trie
https://en.wikipedia.org/wiki/Radix

merged with its parent. The result is that the number of children of every internal node is
at most the radix k of the radix tree, where k is a positive integer and a power x of 2,
having x ≥ 1. Unlike regular trees, edges can be labeled with sequences of elements as
well as single elements. This makes radix trees much more efficient for small sets
(especially if the strings are long) and for sets of strings that share long prefixes.

Unlike regular trees (where whole keys are compared en masse from their beginning up to
the point of inequality), the key at each node is compared chunk-of-bits by chunk-of-bits, where
the quantity of bits in that chunk at that node is the radix r of the radix trie. When the r is 2, the
radix trie is binary (i.e., compare that node's 1-bit portion of the key), which minimizes
sparseness at the expense of maximizing trie depth—i.e., maximizing up to conflation of
nondiverging bit-strings in the key. When r is an integer power of 2 having r ≥ 4, then the
radix trie is an r-ary trie, which lessens the depth of the radix trie at the expense of
potential sparseness.
Note that although the examples in this article show strings as sequences of characters,
the type of the string elements can be chosen arbitrarily; for example, as a bit or byte of
the string representation when using multibyte character encodings or Unicode.

Radix trees support insertion, deletion, and searching operations. Insertion adds a new
string to the trie while trying to minimize the amount of data stored. Deletion removes a
string from the trie. Searching operations include (but are not necessarily limited to) exact
lookup, find predecessor, find successor, and find all strings with a prefix. All of these
operations are O(k) where k is the maximum length of all strings in the set, where length
is measured in the quantity of bits equal to the radix of the radix trie.

Lookup
Finding a string in a Patricia trie

The lookup operation determines if a string exists in a trie. Most operations modify this
approach in some way to handle their specific tasks. For instance, the node where a
string terminates may be of importance. This operation is similar to tries except that some
edges consume multiple elements.

 116_003 Ethereum-1.1 Page 5

https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Trie
https://en.wikipedia.org/wiki/Radix
https://en.wikipedia.org/wiki/Multibyte_character
https://en.wikipedia.org/wiki/Unicode

The following pseudo code assumes that these classes exist.

Edge

Node targetNode•
string label•

Node

Array of Edges edges•
function isLeaf()•
function lookup(string x)

{

 // Begin at the root with no elements found

 Node traverseNode := root;

 int elementsFound := 0;

 // Traverse until a leaf is found or it is not possible to

continue

 while (traverseNode != null && !traverseNode.isLeaf() &&

elementsFound < x.length)

 {

 // Get the next edge to explore based on the elements not

yet found in x

 Edge nextEdge := select edge from traverseNode.edges where

edge.label is a prefix of x.suffix(elementsFound)

 // x.suffix(elementsFound) returns the last

(x.length - elementsFound) elements of x

 // Was an edge found?

 if (nextEdge != null)

 {

 // Set the next node to explore

 116_003 Ethereum-1.1 Page 6

 // Set the next node to explore

 traverseNode := nextEdge.targetNode;

 // Increment elements found based on the label stored

at the edge

 elementsFound += nextEdge.label.length;

 }

 else

 {

 // Terminate loop

 traverseNode := null;

 }

 }

 // A match is found if we arrive at a leaf node and have used

up exactly x.length elements

 return (traverseNode != null && traverseNode.isLeaf() &&

elementsFound == x.length);

}

Insertion

To insert a string, we search the tree until we can make no further progress. At this point
we either add a new outgoing edge labeled with all remaining elements in the input string,
or if there is already an outgoing edge sharing a prefix with the remaining input string, we
split it into two edges (the first labeled with the common prefix) and proceed. This splitting
step ensures that no node has more children than there are possible string elements.

Several cases of insertion are shown below, though more may exist. Note that r simply
represents the root. It is assumed that edges can be labelled with empty strings to
terminate strings where necessary and that the root has no incoming edge. (The lookup
algorithm described above will not work when using empty-string edges.)

Insert 'water' at the root r

 116_003 Ethereum-1.1 Page 7

Deletion
To delete a string x from a tree, we first locate the leaf representing x. Then, assuming x
exists, we remove the corresponding leaf node. If the parent of our leaf node has only one
other child, then that child's incoming label is appended to the parent's incoming label and
the child is removed.
Additional operations
Find all strings with common prefix: Returns an array of strings that begin with the same
prefix.

•

Find predecessor: Locates the largest string less than a given string, by lexicographic
order.

•

Find successor: Locates the smallest string greater than a given string, by lexicographic
order.

•

Ethereum Yellow Paper Walkthrough (2/7) (lucassaldanha.com)

Merkle Tree and Ethereum Objects - Ethereum Yellow Paper Walkthrough (2/7)

Lucas Saldanha
11 Dec 2018 • 11 min read
This is another post in our series exploring the Ethereum Yellow Paper. In
this post, we will learn more about the main objects in Ethereum and their
role. We'll also briefly discuss how Merkle trees are used in Ethereum.
(DISCLAIMER: this post is based on the Byzantium version of the Yellow

 116_003 Ethereum-1.1 Page 8

https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-2/
https://www.lucassaldanha.com/author/lucas-saldanha/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

(DISCLAIMER: this post is based on the Byzantium version of the Yellow
Paper, version e94ebda from 5th June 2018)

World State

The world state is a mapping between addresses (accounts) and
account states. The world state is not stored on the blockchain but the
Yellow Paper states it is expected implementations store this data in a trie
(also referred as the state database or state trie).The world state can be
seen as the global state that is constantly updated by transaction
executions. If you remember the discussion in the first post of the
series about the Ethereum network being like a decentralized computer,
the world state is considered this computer's hard drive.
All the information about Ethereum accounts live in the world state and is
stored in the world state trie. If you want to know the balance of an
account, or the current state of a smart contract, you query the world state
trie to retrieve the account state of that account.

An account is an object in the world state.

Till this place

 116_003 Ethereum-1.1 Page 9

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-1/
https://www.lucassaldanha.com/ethereum-yellow-paper-walkthrough-1/

Two practical types of account

Address of account

 116_003 Ethereum-1.1 Page 10

World state trie and Account storage

Account State
In Ethereum, there are two types of accounts: External Owned Accounts (EOA)
and Contract Accounts. An EOA account is the account that you and I would
have, that we can use to send Ether to one another and deploy smart contracts.
A contract account is the account that is created when a smart contract is
deployed. Every smart contract has its own Ethereum account.
The account state contains information about an Ethereum account.
For example, it stores how much Ether an account has and the number of
transactions sent by the account. Each account has an account state.

nonce•
Number of transactions sent from this address (if this is an External Owned
Account - EOA) or the number of contract-creations made by this account
(don't worry about what contract-creations means for now).

•

balance•
Total Ether (in Wei) owned by this account.•
storageRoot•
Hash of the root node of the account storage trie (we’ll see what the account
storage is in a moment).

•

codeHash•
For contract accounts, hash of the EVM code of this account. For EOAs, this
will be empty.

•

Let's take a look into each one of the fields in the account state:

One important details about the account state is that all fields (except the

 116_003 Ethereum-1.1 Page 11

http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html#externally-owned-accounts-eoas
http://ethdocs.org/en/latest/ether.html

One important details about the account state is that all fields (except the
codeHash) are mutable. For example, when one account sends some Ether to
another, the nonce will be incremented and the balance will be updated to reflect
the new balance.
One of the consequences of the codeHash being immutable is that if you deploy
a contract with a bug, you can't update the same contract. You need to deploy a
new contract (the buggy version will be available forever). This is why it is
important to use Truffle to develop and test your smart contracts and follow
the best practices when working with Solidity.
The Account Storage trie is where the data associated with an account is
stored.
This is only relevant for Contract Accounts, as for EOAs the storageRoot is
empty and the codeHash is the hash of an empty string. All smart contract data
is persisted in the account storage trie as a mapping between 32-bytes integers.
We won’t discuss in details how the contract data is persisted in the account
state trie. If you really want to learn about the internals, I suggest reading this
post. The hash of an account storage root node is persisted in the storageRoot
field in the account state of the respective account.

Ethereum can also be seen as a stack of transactions.
Stack of transactions : Ledger

Two practical types of transaction

Account state and Account Storage trie

 116_003 Ethereum-1.1 Page 12

http://truffleframework.com/
https://consensys.github.io/smart-contract-best-practices/software_engineering/#upgrading-broken-contracts
https://medium.com/coinmonks/a-practical-walkthrough-smart-contract-storage-d3383360ea1b
https://medium.com/coinmonks/a-practical-walkthrough-smart-contract-storage-d3383360ea1b

Transactions that transfer value between two EOAs (e.g, change the sender
and receiver account balances)

1.

Transactions that send a message call to a contract (e.g, set a value in the
smart contract by sending a message call that executes a setter method)

2.

Transactions that deploy a contract (therefore, create an account, the contract
account)

3.

Transactions are what makes the state change from the current state to the
next state. In Ethereum, we have three types of transactions:

(technically, types 1 and 2 are the same... transactions that send message calls
that affect an account state, either EOA or contract accounts. But is it easier to
think about them as three different types)

nonce•
Number of transactions sent by the account that created the transaction.
gasPrice•
Value (in Wei) that will be paid per unit of gas for the computation costs of
executing this transaction.
gasLimit•
Maximum amount of gas to be used while executing this transaction.
to•
If this transaction is transfering Ether, address of the EOA account that will
receive a value transfer.
If this transaction is sending a message to a contract (e.g, calling a method in
the smart contract), this is address of the contract.
If this transactions is creating a contract, this value is always empty.
value•
If this transaction is transfering Ether, amount in Wei that will be transferred to
the recipient account.
If this transaction is sending a message to a contract, amount of Wei payable by
the smart contract receiving the message.
If this transaction is creating a contract, this is the amount of Wei that will be
added to the balance of the created contract.

•

v, r, s•

These are the fields of a transaction:

 116_003 Ethereum-1.1 Page 13

https://medium.com/@rsripathi781/6-payable-functions-in-solidity-smartcontract-ethereum-d2535e346dc1

v, r, s•
Values used in the cryptographic signature of the transaction used to determine
the sender of the transaction.
data (only for value transfer and sending a message call to a smart contract)•
Input data of the message call (e.g, imagine you are trying to execute a setter
method in your smart contract, the data field would contain the identifier of the
setter method and the value that should be passed as parameter).
init (only for contract creation)•
The EVM-code utilized for initialization of the contract.

Don't try to grasp all of this at once... Some fields like the data field or the init field
require you to have a deeper understanding of the internals of Ethereum to really
understand what they mean and how to use them. This is not the time to deeply
understand any of these fields.
Not surprisingly, all transactions in a block are stored in a trie. And the root hash of
this trie is stored in the... block header! Let's take a look into the anatomy of an
Ethereum block.

Fields of a transaction

Order of transactions

 116_003 Ethereum-1.1 Page 14

https://medium.com/@hayeah/diving-into-the-ethereum-vm-part-5-the-smart-contract-creation-process-cb7b6133b855

Transaction order is not guaranteed.

Ordering inner block

Miner can determine the order of transactions in a block.

Ordering inter blocks

 116_003 Ethereum-1.1 Page 15

The order between blocks is determined by a consensus algorithm such as PoW.

 116_003 Ethereum-1.1 Page 16

